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Abstract
We introduce a new, efficient method for constructing compact symbolic representations
of very large stochastic labelled transition systems. Contrary to known symbolic state
space generation techniques, our technique is applicable to general high-level models which
do not have to possess any particular structure. The method is based on zero-suppressed
binary decision diagrams which we extended to the multi-terminal case. The symbolic
representation is obtained by evaluating the semantics of the high-level model. During
this step of explicit state graph exploration one constructs a seperate symbolic representa-
tion of all transition induced by the same activity in an on-the-fly fashion. The obtained
"activity-local" structures are finally composed in order to obtain a compact symbolic
representation of the state graph of the overall system. For the then required step of
symbolic reachability analysis we propose a new, sequential and activity-oriented scheme
which leads to better run-times than conventional symbolic reachability computation.
Comparing our new method to previously published schemes, the paper demonstrates
the following advantages: (a) The approach is applicable to a general class of high-level
stochastic models. (b) In partial-order style we avoid the explicit generation of shuf-
fled sequences of independent activities, which results in much higher generation speed.
(c)The composition scheme, as well as the new data structure, results in extremely com-
pact symbolic representations. Furthermore, the comopsition scheme does not require any
product-form of the models sub-units to be composed, as in case of the Kronecker-based
approaches. (d) The proposed variant of symbolic reachability analysis significantly re-
duces run-time, where other symbolic SG representation methods, e.g. like the ones
implemented in the tools CASPA and PRSIM, may benefit from.
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Kurz as sung
In dem vorliegenden Bericht wird eine neue Methode zur Erstellung symbolischer Darstel-
lungen von grolgen stochastischen beschrifteten Transitionssystemen vorgestelit. Im Gegen-
satz zu den bekannten Techniken kann der hier diskutierte Ansatz auf aligemeine stoch-
astische Modellbeschreibungen angewandt werden, ohne dag? diese von besonderer, d.h.
kompositioneller Struktur sein miissen. Zur symbolisehen Zustandsraumdarstellung wer-
den "zero-suppressed" Binaere Entsclieidungsdiagramme verwendet, weiche wir urn mehrere
Terminalknoten erweitern. Die symbolisehe Zustandsraumdlarstellung wird gewonnen,
indem das zu untersuchende Modell entsprechend der zugrundeliegenden Semantik der
Modellbeschreibungsmethode interpretiert bzw. ausgefiihrt wird. Wifhrend dieser ex-
pliziten Zustandsraumexploration wird ffur jede einzel~ne im Modell spezifizierte Aktiv-
Witt emn eigenes symbolisch reprdsentiertes Transitionssystem "on-the-fly" erzeugt. Die so
gewonnenen Aktivitiits-lokalen Strukturen werden dann via Komposition zusammenge-
falt, so daIt man eine kompakte symbolische Zustandsraumdarstellung des potentiellen
Gesamttransitionssystems erhdit. Fuir die dann durchzufiihrende symbolische Erreich-
barkeitsanalyse wird hier emn neues, sequentielles und aktivitiits-orientiertes Verfahren
vorgeschlagen, das mit geringeren Laufzeiten als der bisherige Standardalgorithmus auf-
wartet. Vergieeict man die hier prdsentierte Methode mit den bisher publizierten An-
sdtzen, dann wird folgendes in dem vorliegendemn Bericht demonstriert: (a) Der Ansatz
ld1~t sich ffur eine ailgemeine Kiasse von stochastischen Modellbeschreibungen verwenden,
(b) Der "partial-order-reduction" ifhnliche Explorierungsansatz vermeidet die explizite
Generierung von verschrhnkten Sequenzen unabhdngiger Aktivitdten, was zu einem erhe-
blichen Geschwindigkeitsvorteil fifihrt. (c) Das Kompositionsschema, gemeinsam mit der
neuen Datenstruktur, fifihrt zu extrem kompakten symbolischen Zustandsraumdarstellun-
gen. Darfiberhinaus verlangt das Kompositionsschema keine Produkteigenschaft der zu
komponierenden Modellbestandteile, wie es bei den bekannten Kronecker-basierten Ver-
fahren der Fall ist. (d) Der neue Algorithmus zur symbolisehen Erreichbarkeitsanalyse
reduziert die Laufzeit, auch anderer symbolischen Zustandsraumreprdsentationsverfahren,
wie sie bspw. in den Werkzeugen CASPA und PRISM realisiert sind.
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1 Introduction

Considering the wide proliferation of distributed hardware and software systems, it be-
comes increasingly important to ensure that such systems work correctly and that they
meet high performance and dependability requirements. Stochastic models, e.g. stochastic
Petri nets or stochastic process algebra specifications, have shown to be powerful tools for
describing and analyzing such concurrent systems. We consider high-level specifications
of distributed systems, from which a low-level representation is derived, such as stochastic
labelled transition systems (SLTS) or (labelled) Markov chains. This state graph (SG)
provides the basis for analysis, be it numerical analysis, model checking or combinations
thereof.

Unfortunately, the interleaving semantics can easily lead to a growth of the SG which is
exponential in the number of independent activities, a phenomenon commonly known as
the "state space explosion" problem. In this paper, we present a new symbolic method
for constructing and representing the SG for a general class of models which do not have
to possess any particular structure. The symbolic representation is obtained by evalu-
ating the semantics of the high-level model and constructing a separate symbolic set of
transitions for each model activity in an on-the-fly fashion, where zero-suppressed multi-
terminal binary decision diagrams (ZDDs) are used as the basic data structure. The
"activity-local" structures are composed in order to obtain a compact symbolic represen-
tation of the SG of the overall system. Our algorithm is a round-based scheme, where
exploration, encoding, composition and symbolic reachability analysis are performed until
a fixed point is reached. Results obtained from an implementation of our method in the
context of the M6bius modelling framework [DCC+02] show that our method is both run-
time efficient and memory efficient and therefore enables the analysis of systems whose
size would otherwise render them intractable.

1.1 Related work

In the context of stochastic modeling, the most prominent decision diagrams (DDs)
are multi-terminal or algebraic BDDs (ADDs) [FMY97], multi-valued decision diagrams
(MDDs) [KVBSV98] and matrix diagrams [Min01j. In the following a review and classi-
fication of symbolic SG generation schemes as published in the literature will be given.

Published symbolic approaches range from the individual generation of each succes-
sor state and its symbolic encoding [DKK02] to compositional generation procedures,
where operators for symbolic submodel composition are provided [HMKS99, CM99, Sie02,
AKN+00. At the top level, we distinguish between monolithic and compositional ap-
proaches, where the latter are based on SG exploration of the overall models subunits as
well as on operators for the symbolic composition of these local SGs. or even avoid the
representation of the overall transition system by employing Kronecker-matrix-operations
[CM99]. In contrast monolithic approaches do not take advantage of any structure as
possibly inherited by the high-level model, the SG is generated in one step by exploring
all enabled activities in each state, which may lead to tremendous run-time overhead or
peak memory sizes. We further distinguish between fully symbolic approaches and hybrid
approaches, where hybrid characterizes a combination of explicit exploration and sym-
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bolic encoding. Fully symbolic methods require a symbolic realization of the next-state
function, which is directly derived from the high-level model description. Thus the latter
methods are highly efficient, since they avoid any explicit SG exploration, but they are
limited to the case of the respective model description method, e.g. like R-TIPP [KS021 (a
stochastic Process Algebra as employed in the tool CASPA [KSW04], simple k-bounded
Petri nets, or the input language of [Par02, Pri].

1. Monolithic approaches
These methods do in principle not consider any particular structure of the high level
model, but either suffer from long run-times or; depend on the model d&scription
method.

(a) Hybrid: In [DKK02J the reachability set of a stochastic Petri net is generated by
successively firing the enabled transitions, one at a time. Each detected state
vector is encoded as a binary decision diagram (BDD) and inserted via dis-
junction into the decision diagram (DD) representing the set of states reached
so far. Due to its sequential nature this approach suffers from long run-times.
Besides this the memory savings achieved are due to the use of P-invariants,
whose computation require that the S-PN is of a certain kind.

(b) Fully symbolic: The method presented in [PRCB94] gives a symbolic transition
function for each activity1 as defined in a non-stochastic, 1-bounded PN. It
generates the set of all reachable markings by introducing the standard breadth-
first search (bfs.) algorithm for symbolic reachability analysis. Even though
this approach is highly efficient, its applicability is limited to the case of PNs,
where this approach was latter extended to the case of k-bounded weighted PNs
with inhibitor arcs IPRC97].

2. Compositional approaches
Compositionality is known to be crucial for the success of symbolic methods, since it
reduces run-time and space complexitiy. Runtime is reduced, since only sequences
of activities at the level of sub-units, sub-models resp. are extracted explicitly,
so that the explicit generation of all shuffeled execution sequences of independent
activities is avoided. The reduction of space complexity is gained from regularity of
the symbolic structures as induced by the composition schemes [EFT93, HMKS99,
HKN+03]. Consequently compositional approaches, i.e. all of the approaches listed
below, require therfore an adequat compositional structure of the high-level model,
where furthermore the SGs of the submodels in isolation need to be finite. However
the partitioning of flat models into independent subunits with local SGs of adequate
sizes is still an open question.

(a) Hybrid: If the high-level model is partitioned into submodels, it may be possible
to generate the SG of each individual submodel in a conventional, explicit
manner. The submodel SGs are then encoded as DDs and afterwards composed
by a symbolic composition scheme, where the composition may take either of
the two following forms:

1In contrast to standard PN notations, the term activity is emphasized here, so that transitions will in
the following always address the low-level counterparts of activities when SG generation has taken place.
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i. Synchronization over a set of activities, either by employing a Kronecker
structure to compute the elements of the overall generator matrix [CM991,
or by applying a symbolic version of the synchronization operator to gener-
ate a symbolic representation of the overall transition matrix [Sie98, Sie021.

ii. Composition via' state variable sharing, and application of a symbolic
"Join"-operator [LS02].

(b) Fully symbolic: In this case, the modular high-level specification is translated
directly to a DD-based representation, where submodel encodings are com-
posed by symbolic synchronization operators [AKN+00, Par02, KS02].

Many of the approaches listed above are limited to cases where an upper bound for the
value of each state variable (SV) is known a priori. This restricts their applicability
to cases where the bounds are specified in the model [KS02, Par02j, where the local
SG can be generated in isolation [CM99, Sie98, Sie02, LS02], or where bounds can be
computed, e.g. by means of invariant analysis [PRCB94, DKK021. In order to overcome
this restriction, recently developed methods generate the local SGs in an interleaved
fashion [CMS03, DKS03], but the application of these methods is problematic in case of
flat models where a partitioning into adequate submodels is not obvious. As a further
problem, concurrency taking place within one of the submodels is not detected, i.e. shuffled
sequences of independent activities are fully expanded at the submodel level. These
considerations result in two focal aims for our new scheme:

1. The individual treatment of states (both their exploration and encoding) should be
avoided as much as possible.

2. The scheme should be applicable to both, structured and flat models.

Our activity-local scheme, whose basic idea we had described briefly in [LS03I (but for a
limited class of models and using standard symbolic reachability analysis), achieves these
goals by maintaining compositionality at the lowest level, i.e. at the level of individual
activities. Due to the nature of Bryant's [Bry86] Apply-algorithm, the activity-local
structures do not need to fulfill any product-form requirement as is the case for Kronecker-
based schemes. Thus the activity-local approach does not require any particular structure
of the high-level model.

In order to extend the saturation technique of [CMS03] to a general class of models,
[Min04] describes a kind of Apply-algorithm for building the cross-product of two matrix
diagrams. This algorithm allows [MinO4] to employ the same composition scheme in the
context of matrix diagrams, as introduced for BDD-based schemes in [LS02J and extended
in [LS03]. These ideas, which allow one to apply symbolic SG generation techniques to
models, where the Kronecker-product-form requirement does not hold, are still at the
core of the activity-local scheme described here, but the present paper has more to offer,
namely a new data structure and a new scheme for symbolic reachability analysis,where
the latter follows an activity-wise startegy. Thus similiar to the approach of [BCL91], one
executes partitions of the overall transition system sequentially, rather than executing
them all at once. Furthermore it enables one to employ greedy chaining on the set of
states to be explored in the next step. As we recently noticed a similiar startegy, however
in case of k-bounded non-stochastic Petri nets is also proposed in [PRC97].
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1.2 Organization of the paper

Sec. 2 introduces the model world and discusses the encoding of labelled Markov chains
by ZDDs. Sec. 3 explains our new algorithms and discusses their features. Empirical
results are presented in Sec. 4, and Sec. 5 concludes the paper.

2 Background

2.1 Static properties of high-level model descriptions

A model M consists of a finite ordered set of discrete state variables (SVs) si E S, where
each can take values from a finite subset of the naturals. As a consequence, each state of
the model is given as a vector 9 E S C NISI. Concerning the high-level model description
by means of Petri nets or process algebras, the current value of a SV may describe the
number of tokens in a place, the current state of a process or the value of a process
parameter. A model has a finite set of activities, denoted Act. SVs and activities are
connected through a connection relation Con C (S x Act) U (Act x S). Thus the execution
of an activity 1 E Act depends on a certain set of SVs (the enabling set), and when it is
executed it changes the values of a certain other set of SVs (the set of affected SVs). In the
style of Petri nets we denote the set of enabling SVs as pre-set >l := {si E SI(si, 1) E Con},
and the set of affected SVs as post-set l< : {s= E S] (l, si) E Con}. The union of these sets
will be denoted as the set of dependent SVs of activity 1, >l< := >l U 1<. For each activity
1 E Act, we define a projection function XD1: NIsi ) Nl,' I which yields the sub-vector
consisting of the dependent SVs only. We use the shorthand notation -DI := xDI(8)'

where S-D, is called the activity-local marking of state 8- with respect to activity 1.

We have a reflexive and symmetric dependency relation Act C Act x Act. Two activities
1, k E Act are called dependent if they share at least one SV, i.e. (k, 1) E Act: V =

> fl >1. $ 0. Now the set of dependent activities for each activity 1 can be defined as
AD= {k E Act 1 (1, k) E Actv}. Note that according to this definition we have 1 e ADI.

Each time activity 1 is executed, the activity-local markings for the activities E AAD, may
have changed as well, so that new transitions might be obtainable by executing these
activities. We will make use of this set in our scheme.

2.2 Dynamic properties of high-level models

When an activity takes place, the model evolves from one state to another. The transition
function 6 : S x Act - S depends on the model description method. Concerning
the target state of a transition, we use the superscript of a state descriptor or SV to
indicate the sequence of activities leading to that state, thus we write 8- := 1(S-, ). If
activity 1 is enabled in state 8 we write s-[> 1. We also define the partial rate function
n: S x Act x S - R>O, which yields the rate at which the model moves from source to
target state when a specific activity I occurs. The rate 7(.§ 1, 8-') is undefined if S(§, 1) 78 g'.
During SG exploration, J and 7 define the successor-state relation as a set of quadruples
T C (S x Act x 1>O x S), which is the set of transitions of a stochastic labelled transition
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system.

For each 1 E Act we partition T into sets of transitions with label 1, where each state
vector is reduced to the activity dependent markings:

T' :={(SD1,l,A,9) SD1 =X D(g) A D1 = XD, ((1
A ( 1, A, 91) E T}

Note that, due to the abstraction from the independent SVs, an element of T' might
correspond to more than one element of T. Concerning two activities I and k, we define
the following partitioning of the set of SVs:

Dlk~l
D't >=•l< nq >k< D: 'k

k:1ki := ~< n > •k-
k ,l :I >l<, n >k< Dk, 'I >F n t>k<•(2

The pairwise intersection of the above sets is empty and their union is the set of all SVs
S. After a suitable reordering of the state descriptor we can write S- = (s91h, 81,k, 82, 3•).

We can then distinguish the following cases concerning the execution sequences p 1 k
and w = k 1:

- 1P~ k:- (1 .- j~ k 1 _k lkg\
(8 1,1' Si,ke, 82, 83) (8\ 1,1' 81,k' 2' 3

-. w• g -.- t g1 -Sig'k,S2,3)__•t - -kl -53-j
s s -- ( 1,1, slk,9211,, Sl S , s s2, S3)

S *S 8 1k 2'1

In case (1, k) € Act* we have D2,1 = 0 and thus

if 8[, k then 1 [> k (Prop. Ia)
if •f>1 then gk [> 1 (Prop. Ib) (3)
81k = •kl (Prop. II)

Thus, the order of the independent activities k and I is without significance (diamond
property, Prop. II). It is obvious that one may execute these activities independently on
a given source state 8- = ( 1,, 51,k, 82, 83), where the target state of the sequential execution
of either kl or 1k can be obtained by combining the dependent sub-vectors s1,z and sgki.
It is clear that the above properties also hold for sequences of more than two activities
which are pairwise independent. This yields a well-known equivalence relation on the
set of sequences of transitions, where two sequences w and p are considered equivalent
if and only if they can be obtained from each other by swapping adjacent independent
transitions. Each equivalence class is commonly denoted as a trace [God95].

2.3 Symbolic encodings of state graphs

Binary decision diagrams (BDDs) are a popular data structure for symbolic SG represen-
tation. In the context of stochastic modelling, the most prominent decision-diagram based
data structures are multi-terminal or algebraic BDDs (ADDs) [FMY97], multi-valued de-
cision diagrams (MDDs) [KVBSV98] and matrix diagrams [Min0l].

2.3.1 Binary Encodings of Transitions

The value of a SV si can be encoded in binary form. For this purpose we define an
injective encoding function ,i 0, . .0 . , Ki} --_ B]•, where Ki is the maximum value of si
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and ni r_ [log 2(Ki + 1)1. We define n ni which is the number of bits required
for encoding the full state vector §. For convenience, we define an encoding function for
the full state vector £s : NISI ) ]B , which is simply the combination of the individual
ones. In a similar fashion one can encode the index of each activity label by an encoding
function SAct using n.A bits. This gives us the following binary encoding scheme:

(g A 4) d ., ())

The rate A is not encoded in binary form, it will be stored in a terminal node of the ADD.

2.3.2 Zero-suppressed multi-terminal binary DDs (ZDDs)
I

In a reduced ordered BDD, isomorphic subgraphs have been merged and don't care nodes2

are skipped. Zero-suppressed BDDs (Z-BDDs) [Min93] are derivatives of BDDs for rep-
resenting sparse sets efficiently. In Z-BDDs, instead of eliminating don't-care nodes, one
eliminates those non-terminal nodes whose 1-successor is the terminal 0-node. We extend
Z-BDDs to the multi-terminal case, i.e. a ZDD is like a multi-terminal BDD, but instead
of eliminating don't care nodes we eliminate those nodes whose 1-successor is the termi-
nal 0-node. Standard arithmetic operators can be performed efficiently on the ZDD data
structure with the help of a variant of Bryant's [Bry86] Apply-algorithm3 .

2.3.3 ZDD-based representation of SGs

A transition of a labelled transition system can be encoded by a Boolean vector. Each
bit position of the vector corresponds to a Boolean variable of the ZDD representing the
overall SG. The symbolic representation of a SG T is a ZDD Z over the Boolean variables
9; 9 and f where the variables 9 encode the activity label, variables S- encode the source
state, and variables f encode the target state of a transition. In the sequel we assume
that the ZDD variables are ordered in the following way: At the first nAdt levels from
the root are the variables aj, and on the remaining 2n levels we have the variables si and
t, in an interleaved fashion, which is a commonly accepted heuristics for obtaining small
BDD sizes. For convenience we will use the somewhat sloppy notation 8- E Z to denote
the check whether the encoding of a certain state 8 is contained in the ZDD Z either as
a source or as a target state.

2.3.4 Unknown bounds for SVs

The values Ki are in general not known a priori to SG generation. Contrary to ADDs,
ZDDs have the nice feature, that during SG generation and encoding one can allocate a
new most significant bit for any SV si by simply declaring a new Boolean variable for Z,
i.e. without (!) changing the structure of the DD. Thus it is not necessary to know the
maximum value Ki of SV variables si in advance, and the introduction of new bits does
not slow down the generation process.

2A don't care node is a node whose I- and 0-successors are identical.
3Our implementation is built on top of the CUDD package ISom98], but we extend each DD by the set

of variables on which it depends. This allows us to implement an Apply-algorithm for partially shared
ZDDs.
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2.3.5 Example

In order to demonstrate the process of symbolic encoding and the advantages of ZDDs,
we will complete this section by discussing a small example. Part (A) and (B) of Fig. 1
show a simple SPN and its underlying SLTS4 . The Boolean encodings of the transitions
of the SLTS are specified in table (C), where activity labels are encoded by a-bits, source
states by s-bits and target states by t-bits.' Part (D) shows the corresponding ADD M,
where the Boolean variables encoding the bits of source and target states are ordered
in an interleaved fashion. The rates of the transitions are stored in the terminal nodes.
The ADD is ordered, i.e. on all paths from the root to a terminal node we, have the
same variable ordering, and it is reduced, i.e. all isomorphic substructures have been
merged. In the ADD, a dashed (solid) arrow indicates the value assignment 0 (1) to
the corresponding Boolean variable on the respective path. The nodes printed in dotted
lines are those which get eliminated when applying the zero-suppressing reduction rule
for ZDDs6 .

3 Symbolic Activity-local State Graph Generation

3.1 Main ideas

The main idea of our approach is the explicit exploration of parts of the SG, where a de-
tected transition is encoded symbolically and inserted into an "activity-local" ZDD. The
modular or hierarchical structure of the model is without any significance for this scheme,
we only need to know the set of dependent SVs for each activity. Each activity 1 has its
own ZDD which depends only on those Boolean variables which encode the dependent
SVs of 1. After the generation of the activity-local ZDDs, the symbolic representation of
the overall SG is obtained by composing the activity-local ZDDs and carrying out a sym-
bolic reachability analysis. Several rounds of generation and composition may be needed
to construct the overall SG.

Let us assume, that at the end of an exploration phase we have jAct! ZDDs Z1 each
of which encodes the corresponding relation T' as defined in eq. 1. We define the sets of
dependent Boolean source and target variables, as well as the sets of their independent
counterparts:

DI := Is-', ft I si E >l,4 } 11 :-- {s-ý, tisj E ý14} (4)

In this equation, V' and f'i denote those Boolean variables which encode the value of
the SV s, in the source and target state of a transition. The activity-local ZDD for
activity 1 depends only on the set D1. Before composition can take place, Z, needs to
be supplemented by the set of independent Boolean variables I1, yielding the symbolic
representation of the set of potential transitions induced by activity 1. When activity

"4For the moment, the bold, regular and dashed arrows of the SLTS have the same meaning, we will
discuss the difference between them in Sec. 3.3.

5The 5 integer state variables are encoded by 6 bits, since only the last one (the marking of place p5)
can take a value other than 0 or 1.

6In this example, the ZDD reduction rule can be applied in a straight-forward manner, since incidently
in M no node is skipped.
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(A) A stochastic Petri net (B) The corresponding SLTS
C, di, A ' 00

L d lp 2; 10 10 0

P1 P2 P
01 100 1001 0

00 0 10 01 01 0 10001

(D) ADD representing the SLTS

d ,,

00 00 2

al

(C) Binary encodings of the SLTS

S2 1ala2aj SlS 2S3S4S5S6  t~t2t 3t4t 5tJ M

1t2 01000 011000

-- S3 a 000 100100 010100 A

t1 00001 010001

101000 100100
S4 c 001 011000 010100 A

*t 4  001001 000101

A011000 001001
""y S:b 010 010100 000101 u:' €:"t5 010001 000010

s6 100100 100001

"d 011 010100 010001 [A
__'_"__ 000101 000010
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Figure 1: From a SPN to the symbolic representation of its underlying SLTS
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1 takes place, the SVs si E ýlK do not change their values, they stay stable, which is
expressed by the pairwise identity over the Boolean variables contained in I,:

• i

Stab,((i 1, f,,) A:A(= A-t,)
.siE ý_< =

During composition, the activity-local ZDDs are combined in order to obtain the transition
relation of the overall model:

ZT : ZZ" Stabl.AI . (5)
1EAct

Hereby A, represents the binarily encoded activity label 1. The ZDD ZT thus constructed
encodes a set of potential transitions of the overall model. Therefore, at this point it is
necessary to perform symbolic reachability analysis.

For generating the sets of activity-local transitions TV we follow a selective breadth-first-
search strategy, i.e. for a detected state gP which was reached by firing action 1 we generate
the set of successor states by applying the transition function 3 for each dependent activity
k E A.D, where

AD,' := {k E ADLg,, 'Ek A V' [>k} (6)gi I Dk

In eq. 6, s • Ek states that activity k was not yet tested on the activity-dependent
marking of state S-. The Z-BDD Ek is introduced here for convenience. It encodes those
activity-local markings on which activity k was already tested (successfully or not)'. Con-
sequently, Ek is initialized with the model's initial state §*. For initializing the activity-
local SG generation procedure we define A.,, which is the set of activities enabled in the
initial state.

3.2 SG Generation Scheme

The SG generation is realized with the help of two complementary procedures, Encode-
Transitions and ExploreStates (shown in Fig. 2.A and 2.B), which we discuss in the sequel.
In line 2 of algorithm EncodeTransitions a transition is read from the TransBuffer, and
in lines 3 - 7 the set A.1 of activities enabled in the successor state is determined. The
list of state-activity tuples to be explored further is inserted into the StateBuffer in line
9, and finally the activity-local encoding of the current transition is inserted into ZDD ZZ.
The complementary exploration routine ExploreStates for executing the set of activities
A D, on a state gV works as shown in Fig. 2.B. In line 2, a state together with a list of ac-
tivities to be checked is read from the TransBuffer. For each activity from that list, the
successor state gik and the corresponding rate A are computed (lines 4 and 5). The tran-
sition thus found is inserted into the TransBuffer (line 7), provided it is not a self-loop
(line 6)8. By executing procedures ExploreStates and EncodeTransitions in an alternating
fashion, the algorithm will reach a point where EncodeTransitions has been executed and
the StateBuffer is still empty. This means that the algorithm has visited all states

7 One could also test if gjD E Zk, either as source or target state. Repeated tests of states would only
induce a small run-time overhead.

'Self-loops can safely be omitted since they do not influence transient or steady-state probabilities.

12



(A) Encoding and insertion of transitions into Z,

(0) EncodeTransitions0
(1) while (TransBuffer 7 empty) do begin
(2) ( 1, A, -') - TransBuffer

(3) A g,' D

(4) for each k E ADI do begin
(5) if 9 € E A ^- [> k then A' := A,' U {k}
(6) Ek := Ek U SDk
(7) end
(8) if Afl ,4 0 then
(9) StateBu f f er (---1)• ADp

(10) zi := Z1 +6(SD,, A, gD1)
(11) end

(B) Exploration of states, where g8 V Z'

(0) ExploreStates0
(1) while (StateBuffer # empty) do begin
(2) (91, A D) -- StateBuf fer
(3) for each k E Af4/ do begin
(4) gzk := J(§*,k)
(5) A:= n(,k, g-k)

(6) if g 8 • gik then
(7) TransBuf fer (S-', k, A, gik)

(8) end

Figure 2: Algorithms for explicit exploration and encoding
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Symbolic composition, symbolic reachability analysis
and refill of StateBuffer

(0) InitiateNewRound0
(1) ZR := ReachabilityAnalysis0
(2) for each k E Act do begin
(3) Temp:= ZR \ Ek
(4) while Temp : 0 do begin
(5) g8- Temp
(6) if '[[> k then StateBuffer (8- ( {k})
(7) Temp := Temp \ {g(g-)}
(8) end
(9) end

Figure 3: Algorithm for re-initiating a new round of explicit exploration and encoding

reachable from the initial state(s) through sequences of dependent activities. However so
far we have not considered the combined execution of independent activities which may
trigger new model behavior. This is important, since the activity-local scheme does not
generate states of the latter type explicitly, they are obtained by symbolic composition,
i.e. applying eq. 5. The whole functionality of testing such states is encapsulated in algo-
rithm InitiateNewRound, where symbolic composition and reachability analysis is realized
by procedure ReachabilityAnalysis, its realization will be discussed below (see Sec. 3.4).

In lines 2 - 9 of algorithm InitiateNewRound (Fig. 2) one determines those reachable states
on which a given activity has not yet been tested, since these need to be examined further.
The obtained pairs of states and enabled activities are inserted into the StateBuffer
(line 6) in order to re-initialize the StateBuffer for a new round of explicit SG ex-
ploration and symbolic encoding. A fixed point in SG generation is reached when the
StateBuffer is still empty after the execution of InitiateNewRound. After the final call
of InitiateNewRound, Z := ZT • ZR gives one the symbolic representation of the reachable
SG of the overall model as ZDD Z.

The top-level algorithm for our activity-local SG generation and encoding strategy is
shown in Fig. 4.D. In lines 1 - 3, the StateBuffer, the TransBuffer and the Z-
BDDs Ek are initialized. In the inner loop (lines 5 - 8) procedures ExploreStates and
EncodeTransitions are called in an alternating fashion. The re-initialization, performed by
procedure InitiateNewRound is called in line 9, before a new round of the outer loop (lines
4 - 10) is started. The final set of all reachable transitions is computed in line 11.

3.3 Comments on the activity-local generation scheme

In this section we will reason about the correctness and completeness of our activity-local
approach, i.e. we will discuss the correctness of the symbolic activity-local composition
scheme and we will discuss the "partial" character of its explicit exploration part.
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(0) ExploreStateGraph0
(1) StateBuffer •- (V, {fD})
(2) TransBuffer =0

(3) for each k E Act do begin Ek :=9(9') end
(4) do begin
(5) do begin
(6) ExploreStates0
(7) EncodeTransitions0
(8) end until StateBuf fer = 0
(9) InitiateNewRound0
(10) end until StateBuffer 0
(11) ZT:=(Z ZZ Stab,. A,)" ZR'

lEAct

Figure 4: Main algorithm of activity-local SG generation

3.3.1 Correctness of the generated transitions

Our algorithm starts from the initial state. For a given state gs reached by activity 1, the
algorithm explores activity k if and only if

1. 1 and k share dependent SVs (i.e. the execution of 1 may influence the enabledness
of k)

2. k is enabled in 9"

3. k has not yet been explored from any other state F whose projection to the set of
dependent SVs Dk is identical to that of V' (i.e. '~k = rDk).

Instead of encoding a detected transition (9, 1, A, -1) as a whole, the algorithm only encodes
the SVs in the set D1. The SVs outside the set D, may take arbitrary values, but they
must remain stable upon execution of activity 1, which is expressed by the multiplication
with Stabi. This has the effect that a single detected transition is encoded as a possibly
huge set of potential transitions. By performing a symbolic reachability analysis, this set
of potential transitions is reduced to the transitions which are actually reachable from the
initial state, yielding only legal transitions.

3.3.2 Completeness of the generation scheme

According to the diamond property [God95] (c.f. Sec. 2.2) for two independent activities
1 and k (here (1, k) 0' ActD), the order of their execution is without significance. Conse-
quently one may execute these activities independently on a given source state 8. The
target state of the combined sequential execution of either k1 or 1k can than be obtained
by combining the activity dependent markings as contained in the intermediate states g-

and gk. This property also holds for sequences of pairwise independent activities, yielding
the well-known trace equivalence relation on the set of sequences of executed activities
[God95]. Consequently one only needs to generate the sequences of dependent activities
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explicitly. All other states can be obtained by a composition of the kind as mentioned
above. This is exactly the functionality of the algorithms presented in Fig. 2.

3.3.3 Example

We consider again the example depicted in Fig. 1, where we will especially illustrate now
the reasons why in the general case the activity-local generation scheme may need more
than one round of exploration. One may for the moment ignore the rate information,
since it is irrelevant for the following discussion. Starting from the initial state (10100),
the activity-local scheme will explore those transitions explicitly which are drawn by fat
arrows in the figure. As an example, transition 10100 -a- 01100 will be explored and then
encoded in the activity-local ZDD Za of activity a as 10"** ) 01"**, where the symbol
* denotes a don't care, since the respective variables are not visible within Za (only Pi and
P2 belong to the set of dependent SVs of activity a). The transitions drawn by regular
arrows are the ones which are generated during the composition of the activity-local
ZDDs, which can be seen as a cross product construction followed by reachability analysis
as called by algorithm InitiateNewRound. We will now explain why the transitions drawn
as dashed arrows in the figure are not generated during the first round of exploration,
i.e. the reason why more than one round of explicit exploration is required. Consider,
for example, transitions caused by activity d: In the first round the algorithm explicitly
generates the transition 10010 d 10001, which is encoded in the activity-local ZDD
of activity d as ***10 ) ***01. The cross product construction yields any transition
+++10 d +++01 (where the +-positions are arbitrary but stable), but it does not yield

the dashed transition 00011 d- 00002. During procedure InitiateNewRound, however, the
algorithm will detect the fact that state 00011 is reachable and that activity d has not
yet been tested in states of the type ***11. Therefore the tuple (00011,d) will be inserted
into the StateBuffer at this point, and this dashed transition (as well as the other two
dashed transitions) will be explored in the second round.

3.4 Symbolic reachability analysis

We now discuss two variants of a reachability algorithm as required by algorithm Initiate-
NewRound (line 1 of algorithm of Fig. 4.C). - In line 1 of the algorithm of Fig. 5.A
we first compute the ZBDD ZT, which represents the set of potential transitions, (for
simplicity, activity-labels are omitted and rates are dropped). Furthermore the algorithm
employs another three ZBDDs: The ZBDD Zu for representing the set of unexplored
states, the ZBDD ZR for representing the set of reached states and ZBDD Ztmp, which
represents the set of states detected in the current iteration. The former two ZBDDs are
initialized with the binary encoding of the initial state P, where the function M constructs
the respective ZBDD (lines 2 and 3). The standard breadth-first-search (bfs) symbolic
reachability analysis is realized by the do-until loop of lines 4 - 8. The conjunction of Zu
(unexplored states) and ZT (potential transitions) delivers all transitions emanating from
the states of ZU. The subsequent abstraction of the source states as encoded by variables
9 yields the set of newly reached target states stored as Ztmp (line 5). From the level of
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(A) Quasi-parallel symbolic reachability analysis
bfs. traversal as proposed by [PRCB94, Sie02]

(0) ReachabilityAnalysis0
(1) ZT : 1r-ct Z1 Stab,
(2) Z :=M(f, E())
(3) Z := M (S- (S('))
(4) do begin
(5) Ztmp := Abstract (ZT A Zu, -, V) \ ZR;

(6) ZR ZR V Ztmp;
(7) ZU•:=t z• S-{ <- t-1};
(8) end until Zu = 0
(9) ZR:= ZR{+-t;

(B) Sequential activity-oriented symbolic reachability
analysis organised as quasi-dfs-traversal

(0) ReachabilityAnalysis0
(1) ZR:= 0;
(2) Z, := M(< 9(86);
(3) for each k E Act do begin Zk := Zk Stabk end
(4) do begin
(5) ZR:= ZR V ZU
(6) for each k c Act do begin
(7) Ztmp := Abstract (Zk A ZU, S, V) \ ZR;

(8) Z U ZU V Z t"p{ f- <f;
(10) end
(11) Zu:- Zu \ ZR
(12) end until Zu 0

Figure 5: Pseudo-code of symbolic reachability analysis variants

the reachability algorithm this step is set-oriented and parallel, since Zu may represent
more than one state, and one obtains all successor states. We propose now the following
improvements:

1. replace the "parallel" scheme of line 5 Fig. 5.A by an activity-wise scheme (lines 6 -
10 Fig. 5.B).

2. update the set of unexplored states as soon as possible (line 8 Fig. 5.B).

If Zu of Fig. 5.B were not updated with the newly reached states in line 8, but outside
the inner for-loop, one would obtain the same number of iterations of the main (outer)
do-until loops for both algorithms. The activity-wise iteration of Fig. 5.B combined
with an early update of Zu realizes a set-oriented quasi depth-first-search (dfs) scheme,
since all successor states of Zu reachable by the same activity k are generated in one
step. Consequently this procedure leads to a significant reduction of the number of iter-
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ations (#iter) of the main (outer) do-until loop. In Sec. 4 where the empirical results
of the two reachability algorithms are presented, we will refer to this reduction by the
ratio riter. The order of execution the symbolic encoded state-to-state transition function
thus influences the generation speed. Consequently one may refine or coarsen the set of
states explored in each for-loop, e.g. bookkeeping the sets of unexplored states for each
activity individually. Depending on the employed high-level model, doing so influences
the run-time behavior significantly. E.g. in case of the FTMP model the most efficient
strategy is the strategy to explore all states reached so far (do not remove already explored
states form Zu), however in case of the FMS model such a strategy may almost double
the run-time.

As we discovert recently the authors of [PRC97] also develop the idea of symbolic Petri
net traversal by applying transition chaining. By applying the symbolic encoded activity
transition functions individually one is there also enabled to directly insert the states
reached next into the set of unexplored states (line 7 and 8, algorithm 5.B), but there
without removing the already reached ones. However our experiments showed us, that
this so called greedy chaining technique, even though it reduces the number of iterations
of the outer do-until loop and thus calls to the Apply- and Abstract-algorithms,
plays often a miner role only. Consequently it seems that the sequential employment of
a somehow partiotioned set of symbolic transition functions, which was to the best of
our knowledge already suggested by [BCL91I, is the main source of runtime reduction.
I.e. the sequential handling of small DD-structures is more efficient as handling big DD
structures once-at a time, where the update strategy of the set of unexplored states Zu
plays a minor role only, which of course depend on the employed model.

4 Empirical Evaluation

Within the M6bius modelling framework [DCC+02] the local exploration of submodel
SGs in isolation is not feasible, due to the nature of the Join model composition formal-
ism. Consequently, such a framework is highly suited for implementing the activity-local
approach. Furthermore, this offers the opportunity to compare our method to the com-
positional MDD- and Kronecker-based approach of [DKS03], where submodel SGs are
generated in an interleaved fashion and symbolically encoded on-the-fly.

Our implementation consists of three main modules:

1. A module for the explicit SG generation (derived from the standard SG generator
of Mdbius) which constitutes the interface between our symbolic engine and M6bius
(algorithm of Fig. 2.B).

2. The symbolic engine (mainly algorithm (A) and (C) of Fig. 2 and one algorithm of
Fig. 5).

3. A ZDD-library (based on the CUDD-package [Som98]), which contains the algo-
rithms for manipulating partially shared ZDDs and implements a C++ wrapper for
them.
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The experiments carried out with our implementation, as well as the ones executed with
CASPA [KSW04] and PRISM [Prij, were run on a Pentium IV 3 GHz system with 1
GByte of RAM and a Linux OS. All run-time results were averaged from 100 runs.

4.1 Comparison of the ADD and ZDD data structures

Table 1 illustrates the difference between the ADD- and ZDD-based encoding schemes
with respect to their space and time complexity for five different models taken from the
literature. The first column gives the model scaling parameter, the second gives the
total number of Boolean variables required for encoding all SVs. In order to make a fair
comparison, we encoded each SV by a minimum nufiber of bits. In practice such an
allocation strategy for ADD-variables is not feasible, due to the lack of a priori knowledge
of the maximum value Ki taken by SV si, but a brute-force strategy, where one allocates
as many ADD variables as possible, significantly increases memory space and run-time. In
case of ZDDs, pre-allocation of Boolean variables is unnecessary, since skipped variables
are interpreted as being 0-assigned. In order to give the reader an impression of the
dimensions of the employed DD-structures, Table 1 gives the number of nodes required
for representing the set of reachable states (encoded by Z-BDD ZR), the transition system
(encoded by ZDD ZT), as well as the peak number of nodes (peak) as allocated during
the process of symbolic SG construction. In our implementation, since we employed
the CUDD-package, each node consumes 16 bytes of memory. We also collected the
number of cache hits and misses (concerning the DD "computed table"), in order to give
an impression of the number of calls to the recursive Apply and Abstract algorithms.
Column t. contains the generation time in seconds. In order to simplify the comparison,
on the right-hand side of the table we provide the ratios of memory consumption for ZR,
ZT and the peak number of nodes, where figures are normed with respect to the ZDD-
based version. The last two columns in Table 1 give the ratio of the cache hit rates (rchr)

and the ratio of the construction times rtime, were in both case the ZDD-variant was once
again considered of being of unit 1.

As illustrated by the various case studies, the use of ZDDs reduces memory consumption.
As a consequence of smaller DD sizes, run-time and cache hit rate both improve. The
Tandem Queuing Network model, which we specified as a SPN consisting of 3 places,
constitutes a very interesting case study. Two of the places may contain the number of
tokens specified by the scaling parameter N (let us say places 1 and 2), and the remaining
place (place 3) contains either one or zero tokens. Consequently for N = 2'i -1 the model
uses a very dense Boolean enumeration scheme, where ni is the number of bits used for
encoding place i E {1, 2}. As we expected, and as supported by the experimental data,
in these cases the space requirements of the ADD-based scheme are to be favored. If N
is a power of two, the enumeration scheme is much sparser and a different picture has to
be drawn. Surprisingly, the ZDD-based scheme maintains its run-time advantage in both
cases, which seems to be a consequence of the fact that using ZDDs one does not need to
allocate nodes for 0-assigned variables. Note that the Tandem Queuing Network model is
a worst-case scenario for the activity-local scheme concerning the number of transitions
to be explicitly explored and binarily encoded.

From a certain size on, the FMS model has smaller run-time using ADDs than using ZDDs,
even though the final ADD-structures are much larger than their ZDD counterparts. We
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ZDD-based scheme ADD-based scheme
# nodes caching ratioseN n.. ... t .in m em " sp a ce II r

ZR ZT peak hits misses secs. rrT r.s rchr rtir er

Fault-tolerant Multiprocessor (FTMP) [SM921
2 132 256 5792 7.483e' 4.633e' 1.844e' 0.277 [ 2.01 2.38 2.36 0.39 1.81
3 196 610 16225 2.546e' 1.725e' 7.128e' 1.179 1.99 2.40 2.31 0.43 1.59
4... 262 1044 30892 6.201e 5  414 . 7 3.268 2.00 2.41 2.31, 0.22, 1.80

5 326 1556 49845 9.742e 5  8.646e6 3.723e6 7.257 1.99 4 2.41 2.90 0.43 1.53
6 390 2146 73002 2.278e 1.599e6  6.955e5  14.082 F 1.99 2.41 2.20 0.39 1.44

Courier Protocol (CP) [WL91]
3 122 198 2452 2.328e' 3.175e' 1.518e 6  1.997 1.90 2.41 2.49 0.44 1.81
4 144 271 3490 4.168e 5  5.540e6  2.878e 6  3.781 2.11 2.65 2.80 0.41 2.03
5 144 353 4715 7.303e5  8.421e 6  4.426e6  5.871 1.93 2.43 2.67 0.39 1.97
6 144 433 5941 1.212e6 1.221e 6.489e 6  8.778 1.82 2.29 2.59 0.49 2.06
7 144 515 7184 1.943e' 1.728e' 9.310e6  13.493 1.74 2.2 2.49 0.51 1.78
8 . 166 603 . 8487 2.964e6  2.598e 7  1.477e7  20.128 1.98 2.48 2.86 0.44[ 2.00

Kanban System _CT96]
3 I 64 137 2509 2.969e4 1.527e 8.092e4 0.088 1.58 1.94 5.94 0.55 1.76
4 96 239 4645 6.775e 4  1.065e' 6.381e0 0.275 2.00 2.35 258 047 2.15
5 96 366 7434 1.323e6  1.065e6  6.381e' 0.674 1.73 2.08 2.33 0.48 1.88
6 96 519 10856 2.363e5 2M200e 6  1.280e 6  1.457 1.58 1.93 2.16 0.58 1.71
7 96 Ii697 -14875 3.933e' 4.258e 246 .2 ~. ~ O j j

7 6 69 ... !,8,5 393e :258e6 2ý.416e6 2.929 1.46 1.81 2.03 0.5'9 '1.84

Flexible Manufacturing System (FMS) [CT931
3 68 668 13131 5.969e4  6.108e' 2.924e5  0.305 1.95 2.40 2.41 0.39 1.52
4 90 1654 38124 1.836e5  2.769e' 1.304e 1.386 2.19 2.71 2.66 0.34 1.34
5 94 3377 91448 4.524e5  9.388e0 4.007e6 4.430 2.04 2.56 2.60 0.44 1.13
6 96 5974 1.905e 9.714e 2.852e 7  1.106e7 14.326 1.91 2.39 2.49 0.53 0.83
7 98 9738 3.497e5  1.875e6 (8.323e 7  3.097e 41.785 1.90 2.37 2.40 0.54" 0.62
8 118 15179 6.149e 5  3.383e6 2.560e8 I 9.291e7 126.821,1 2.12 2.64 2.62 0.47 0.55

Tandem Queueing Network [HMKS99]
63 26 19 173 2.297e4  7.148e' 1.927e 0.443 0.42 1.40 1.68 0.84 1.23
64 30 16 174 2.129e 4  7.826e5  2.273e5  0.469 1.06 1.68 2.23 0.88 1.45
127 30 22 204 5.922e4 3.406e' 8.841e5  2.338 0.41 1.40 1.96 0.80 1.14
128 34 18 201 5.398e4 3 .2 0 2 e6  9.113e 5  2.376 1.06 1.68 2.60 0.94 1.33
255 34 25 235 2.354e 5  1.424e7  3.655e6 12.353 0.40 1.40 1.59 0.58 1.11
256 38 20 228 2.647e5 1.531e7  4.202e6  12.729 1.05 1.68 1.72 0.73 1.18
511 38 28 266 8.576e5 6.549e 7  1.616e' 61.146 0.39 1.40 1.51 0.70 1.05
512 42 22 255 8.143e' 7.067e7  1.836e7  62.907 1.05 1.68 1.95 0.66 1.17

aThe figures of the ZDD-based version were considered as 100%, i.e. values above 1 for

rR, rT, rpeak rtime and below 1 for rch, indicate that the ZDD-based version is superior to the ADD-
based version.

Table 1: Empirical comparison of ADDs and ZDDs for various case studies
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(A) MWbius [DCC+02] (B) CASPA [KSW04]
N rtIme I re• rpIak N I rtj I rc2u ITc2c rpeak I•t rtime riter

FTMP Kanban Kanban
2 0.711 0.764 0.698 0.366 3 0.898 1.029 1.119 0.413 1.264 1.332 4.300
3 2.668 3.571 3.429 0.280 4 2.047 2.367 2.672 0.462 1.403 1.900 4.385
4 4.868 6.754 5.714 0.248 5 3.792 4.419 5.112 0.506 1.848 2.609 4.438
5 11.947 22.065 17.24 0.294 6 8.259 9.678 11.352 0.560 2.073 3.269 4.475
6 73.533 10.808 10.158 0.217 7 14.667 17.221 20.033 0.602 2.470 4.143 4.500

CP FMS _ , FMS,
3 2.626 2.915 3.602 0.243 3 0.738 0.736 0.838 0.567 1.148 0.966 4.167
4 2.272 2.437 3.756 0.291 4 1.005 1.003 1.12 0.545 1.221 1.138 4.125
5 2.420 2.564 3.085 0.313 5 1.295 1.228 1.346 0.528 1.575 1.359 4.100
6 2.670 2.988 3.494 0.411 6 1.283 1.362 1.419 0.510 1.702 1.581 4.083
7 3.484 4.387 4.912 0.498 7 1.220 0.8 1.347 0.492 1.839 1.784 4.071
8 6.018 7.197 8.005 0.649 8 1.085 0.653 1.236 0.481 2.303 2.109 4.063

Table 2: Empirical comparison of the two variants of symbolic reachability analysis

give these figures in order to illustrate another important effect, the influence of the
variable ordering on the DD sizes and thus the time for manipulating them. Under a
different variable ordering, the ZDD-based representation delivers much better run-times
(cf. col. 10 and 14 of Table 3.C).

4.2 Reachability analysis

The number of explicitly explored and encoded transitions under the activity-local scheme
is very low (see e.g. col. 3 and 4 of Table 3.A). Consequently it is not very surprising
that under the activity-local scheme, similar to the fully symbolic approaches, most of the
execution time is consumed by symbolic reachability analysis. The portion of time spent
for this symbolic reachability analysis differs, of course, for different models. For instance,
for the Kanban and FTMP model one only spends about 70% on reachability analysis,
whereas for the FMS and CP model symbolic reachability analysis accounts for 99% of the
run time. As a consequence, most of the CPU time is spent in routines for manipulating
the DD structures. Profiling reveals that a dominant fraction of the run-time, between
35% and 68%, is spent in the CUDD-functions UniqueInter and CacheLookup, where other
functions consume less than 10%. UniqueInter delivers either an existing node found in the
unique table, or a newly allocated node. The CacheLookup function accesses the computed
table in order to fetch results from previous recursions of the Apply- or Abstract-
algorithm. Table 2 compares standard bfs- with our new quasi-dfs reachability algorithm.
The data is based on the different run-times, the number of calls to UniqueInter (c2ut) and
CacheLookup (c2ct), and on the peak memory requirements (peak). In order to simplify
the comparison, we only give ratios by norming everything to the figures of the new
variant. Table 2.A shows the figures for the ZDD-based implementation as realized within
Mbbius. While the new variant consumes more peak memory, it involves much fewer calls
to UniqueInter and CacheLookup, which makes it substantially faster. Table 2.B shows
results obtained from a realization of the new reachability scheme within the tool CASPA,
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which is based on ADDs. Even though the number of iteration of the outer do-until
(Fig. 5) loop is reduced by a factor of about 4 (riter in Table 2.B), the quasi-dfs scheme
only halves the run-time. This might be a consequence of the very compact encodings of
each state by CASPA, since CASPA employs a dense enumeration scheme of submodel
states, leading to much "flatter" DD-structures, i.e. DDs with fewer Boolean variables,
than other implementations, e.g. PRISM or our Mbbius implementation. Thus it is not
surprising, that even under CASPA the new scheme for symbolic reachability analysis
becomes more advantageous the larger the generated DDs are, indicated by the growing
figures of column one and two of Table 2.B.

The algorithm of Fig. 5.B leaves room for variation, e.g. one could update the set of
unexplored states outside the inner for loop, one could use all reached states for explo-
ration, rather than only the newly reached ones, etc.. Surprisingly we experienced that
the activity-wise refinement is the main source of run-time reduction. An early updating
for Zu, as realized by our scheme of Fig. 5.B, often plays a minor role only, which of course
depends on the employed high-level model. Therefore we conclude, that one should avoid
operating directly on large DD structures. It is much better to explicitly sequentialize the
operations and operate on smaller structures.

4.3 Assessment of the activity-local scheme

In order to make a fair comparison, we used the same two Mdbius model specifications
as in [DKS03], namely the scalable Fault-tolerant multiprocessor model (FTMP) [SM92]
and the Courier protocol (CP) [WL91]. 9 To the best of our knowledge, these models are
currently the only ones where run-time data for the MDD-based approach under M6bius is
available. The results of [DKS03] were obtained on an AMD Athlon 2400 with 1.5 GByte
of RAM, whereas our own experiments were run on a Pentium 4 with 3 GHz and 1 GByte
of RAM. Table 3.A shows the basic figures for the two models. For simplicity we once again
provide only ratios for run-time1 ° and memory consumption, where we normed everything
to the figures of the the activity-local scheme. Our activity-local approach is significantly
faster than the MDD-based approach, especially in case of the FTMP example. This
shows that our partial-order style strategy of exploring only paths of dependent activities
pays off, especially for models without strongly modular structure (cf. col. 3 and 4 of
Table 3.A and col. 3 of Table 3.C). Furthermore the memory requirement for storing the
set of reachable states is better as well (rmem4R), except in case of the FTMP model with
scaling parameter N = 6.

The size of DDs, and thus the effectiveness of the symbolic manipulations, is strongly
influenced by the ordering of the Boolean variables. Given that symbolic reachability
analysis is the dominant factor of run-time, which is also the case for the BDD-based
approaches as realized in the tools PRISM and CASPA, and given that the variable
ordering might even depend on the model specification itself [KSW04], it is clear that a
comparison of different BDD-based tools needs to be conducted with great care.

9The FTMP model as specified under Mbbius is a worst-case scenario for methods based on composi-
tion, since it has very little submodel-local behavior. It therefore nicely illustrates the advantages of our
approach, which does not require any particular model structure.

10 The timing information in [DKS03] includes time for state lumping, but since this is below 0.3% of
the overall time we can safely neglect it.
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(A) Comparison to the MDD-based (B) Run-time data pro-
scheme of [DKS03] , duced by PRISM [Pri]

I N # states I # trans. # trans, rmem4R rtime N I # states # trans. # peak # iterR t in secs.

CP Kanban

3 2.3812e' 1.3104e' 94 1.52 0.46 3 5.84eý 4.4640 11938 43 0.11993
4 9.7102eo 5.7005e 142 2.53 1.15 4 4.9448e 3.97997 35264 57 0.37980
5 3.2405e' 1.9988es 206 4.17 3.53 5 2.5464e' 2.446e' 59731 71 0.77923
6 9.3302e" 5.9818e' 289 6.70 9.55 6 1.1261e' 1.1571e 93464 85 1.49230
7 2.3965e' 1.5858e' 394 10.61 25.72 7 4.1645e' 135514 99 2.38614
8 5.6182ep 3.8166e- 524 16.03 51.67 _8 1.3387e5  1.I7• 246750 113 4.99712

FTMP FMS

2 256932 1.6978e' 688 1.14 2.78 3 6.52e0 3.7394e4 26574 25 0.23584
3 1.2408e" 1.1513e• 1548 1.08 17.05 4 3.591e 4 2.3712e 76043 33 0.73170
4 5.5039e"~ 6.6113e" 2752 1.06 57.22 5 1.5271eb 111157- 134145 41 1.56822
5 2.3549e1 3.4847e" 4300 1.05 65.36 6 5.3777eb 4 226441 49 2.96269
6 9.9082e" 1.7463e7 1  6192 0.36 830.35 7 1.6394eb T.35537 348540 57 6.02259

8 4.4595e_ 3.8534e " 679426 65 23.08034

(C) Comparing the activity-local approach to PRISM [Pri]
r.# ADD-nodes for I ADD + bfs-reach. ADD + quasi-dfs reach. I ZDD + quasi-dfs reach.

N n # trans, MR MT Ireat [ rtime rpeak riter rtime 1 R rT [ rreak rtime

Kanban

3 64 252 131 2474 12.514 3.15 3.87 0.37 0.95 0.56 0.47 1.78 0.44
4 96 740 260 4898 16.058 4.81 3.52 0.35 1.09 0.44 0.39 1.28 0.41
5 96 1,860 320 6308 19.485 6.14 3.49 0.34 1.10 0.50 0.44 1.39 0.47
6 96 4,116 388 7876 22.047 8.85 3.51 0.33 1.07 0.55 0.47 1.51 0.53
7 96 8,232 457 9521 24.510 9.64 3.60 0.32 1.20 0.59 0.50 1.64 0.65
8 128 15,194 730 14698 27.193 15.59 3.73 0.32 1.44 0.47 0.41 1.35 0.62

FMS
3 68 80 100 1289 6,622 113.257 1 0.80 2.23 0.52 0.50 0.38 0.26 0.92 0.24

4 90 110 180 1 577 16,227 4.960 1.30 2.00 0.48 0.49 0.32 0.21 0.73 0.215 94 110 290 798 26,662 7.348 1.63 2.01 0.44 0.44 0.37 0.21 0.79 0.20
6 96 110 434 1038 40,274 9.487 2.26 1.91 0.43 0.39 0.40 0.22 0.80 0.19
7 98 110 616 1297 56,853 12.750 2.08 1.82 0.40 0.29 0.44 0.22 0.82 0.17

1 118 140 840 2021 96,647 15.736 1.24 1.63 0.40 0.14 0.36 0.18 0.64 0.09

Table 3: Comparison of the activity-local scheme and other symbolic SG representation
approaches
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The probabilistic model checker PRISM [Pri] implements a fully symbolic compositional
SG generation scheme. We decided to employ PRISM for the remaining two case studies
(Kanban and FMS ), since - similar to our own implementation - it allows the user to
specify the SV ordering and it encodes each SV by a Boolean vector. Table 3.B gives the
basic data of the models, as well as some statistics obtained from PRISM: iterR refers to
the number of iterations needed for symbolic reachability analysis (basically algorithm (A)
in Fig. 5, line 4 - 8), and tg refers to the CPU time for the whole process of reachable SG
generation. The number of nodes required for encoding the set of states and transitions is
given in Table 3.C (col. 4 + 5). For the Kanban model our implementation encodes the
model in the same way as PRISM does, consequently the generated ADDs are identical.
But in case of the FMS model, we employed a slightly different model, due to the different
elimination of immediate transitions. As a consequence of employing fewer SVs, we were
able to encode each state by a smaller number of Boolean variables, (see col. 2 of Table 3.C
for details), leading to smaller DD structures, whose sizes are given in col. 3 and 4 of
Table 3.C. In order to evaluate the different aspects of the work presented here, we chose
to investigate the activity-local scheme in three different settings:

1. In the first setting we combined the activity-local scheme with ADD-based SG rep-
resentation, where the standard bfs. symbolic reachability analysis was employed.

2. In the second setting we replaced the standard scheme for symbolic reachability
analysis by our new quasi-dfs symbolic exploration scheme.

3. In the final setting we switched to the ZDD-based SG representation.

The figures of the different settings are shown in column 6 to 14 of Table 3.C, where we
normalized all data to the figures produced by PRISM.

Form Table 3.C one can conclude, that the explicit handling of transitions induces a non-
neglible run-time overhead, albeit this number (transe) is reduced to a small fraction of
the overall number of transitions to be symbolically represented (cf. #trans. and #transe
in Tables 3.A-3.C). However this drawback is justified by two aspects:

1. The activity-local approach - in comparison with the fully symbolic ones - is not
restricted to any specific model description method, which is of great importance
for tools relying on a multi-formalism paradigm.

2. Unstructured monolithic models, such as the FTMP-model, can still be analyzed
efficiently, where submodel-oriented compositional approaches may fail.

As shown by the last 7 columns of Table 3.C, our new algorithm for symbolic reachability
analysis as well as the use of ZDDs improves the situation significantly. As with all
symbolic representation techniques, memory space is not an issue. Even though we store
redundant DDs in order to simplify and speed up the activity-local scheme, the FMS
model, which was the largest model concerning memory requirement, consumed only 10.5
MByte for symbolic SG generation and representation. If memory were at a premium,
the redundancy could easily be eliminated without a dramatic increase in run-time.

24



5 Summary and Future Work

The work presented here consists of the following three main components:

1. We introduced and empirically evaluated ZDDs, which proved to be an excellent
data structure for symbolic SG generation and representation.

2. We proposed a new algorithm for symbolic reachability analysis, organized as a
sequential quasi-dfs scheme, and demonstrated its significant run-time savings.

3. We presented the activity-local SG generation scheme for generating the symbolic
next-state functions by explicit SG exploration.'

The scheme does not only yield compact symbolic representations, but also has the advan-
tage that the SG only needs to be explicitly explored partially. Consequently the scheme
leads to substantial run-time savings, especially in cases where the high-level model does
not have a compositional structure or a fully symbolic method is not applicable. Besides
this, ZDD-based SG representation, as well as the new scheme for symbolic reachabil-
ity analysis can easily be integrated into existing BDD-based tools such as PRISM and
CASPA, in order to improve run-time and reduce memory space.

Since we develop our implementations in the context of Mobuis, we are currently work-
ing on an efficient symbolic realization of the "Replicate" feature and on the symbolic
treatment of reward variables. Another important step of our work is the development
of efficient numerical analysis algorithms. Here we are almost finished with adapting the
approach of [Par021 to the ZDD data structure, where the first results are very promising.
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